Translating Solutions to Lagrangian Mean Curvature Flow

نویسندگان

  • ANDRÉ NEVES
  • GANG TIAN
چکیده

We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Soliton Solutions of Geometric Flows by Separation of Variables

This note surveys and compares results in [12] and [21, 22] on the separation of variables construction for soliton solutions of curvature equations including the Kähler-Ricci flow and the Lagrangian mean curvature flow. In the last section, we propose some new generalizations in the Lagrangian mean curvature flow case.

متن کامل

Translating Solitons to Symplectic and Lagrangian Mean Curvature Flows

In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study properties of symplectic translating solitons. We prove that, the Kähler angle α of a symplectic translating soliton with max |A| = 1 satisfies that sup |α| > π 4 |T | |T |+1 where T is the direction in which the surface translates. Mathematics Subject Classification (2000): 53C44 (primary), 53C...

متن کامل

Lagrangian Mean Curvature Flow for Entire Lipschitz Graphs

We consider the mean curvature flow of entire Lagrangian graphs with Lipschitz continuous initial data. Assuming only a certain bound on the Lipschitz norm of an initial entire Lagrangian graph in R, we show that the parabolic equation (1.1) has a longtime solution which is smooth for all positive time and satisfies uniform estimates away from time t = 0. In particular, under the mean curvature...

متن کامل

Rigidity of entire self-shrinking solutions to curvature flows

We show (a) that any entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C with the Euclidean metric is flat; (b) that any space-like entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C with the pseudo-Euclidean metric is flat if the Hessian of the potential is bounded below quadratically; and (c) the Hermitian counterpart of (b) for the...

متن کامل

Entire Self-similar Solutions to Lagrangian Mean Curvature Flow

Abstract. We consider self-similar solutions to mean curvature evolution of entire Lagrangian graphs. When the Hessian of the potential function u has eigenvalues strictly uniformly between −1 and 1, we show that on the potential level all the shrinking solitons are quadratic polynomials while the expanding solitons are in one-to-one correspondence to functions of homogenous of degree 2 with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008